Universal Properties
A categorical look at undergraduate algebra and topology

Julia Goedecke
Newnham College

23 February 2016, Adam’s Society
Category Theory

- Maths is Abstraction
- Category Theory: more abstraction

Universal Properties

- Within one category
- Mixing categories
1 Category Theory
- Maths is Abstraction
- Category Theory: more abstraction

2 Universal Properties
- Within one category
- Mixing categories
What is Abstraction?

Abstraction

- Take example/situation/idea.
- Determine some (important) properties.
- “Lift” those away from the example/situation/idea.
- Work with abstracted properties.
- Should get many more examples which also fit these “lifted” properties.

Examples

- My pet and my friend’s pet are both cats.
- Cats, dogs, dolphins are all mammals.
- My home, my old school, the maths department are all buildings.
What is Abstraction?

Abstraction

- Take example/situation/idea.
- Determine some (important) properties.
- “Lift” those away from the example/situation/idea.
- Work with abstracted properties.
- Should get many more examples which also fit these “lifted” properties.

Examples

- My pet and my friend’s pet are both cats.
- Cats, dogs, dolphins are all mammals.
- My home, my old school, the maths department are all buildings.
The probably most important step of abstraction in the history of mathematics:

- “3 apples” \rightarrow “3”
Numbers

The probably most important step of abstraction in the history of mathematics:

- “3 apples” → “3”

After that also (not necessarily in this order)

- negative numbers (abstraction of debt?)
- rational numbers (abstraction of proportions)
- real numbers (abstraction of lengths)
More examples

Groups

- Addition in \mathbb{Z}, “clock” addition (mod n) and composing symmetries have similar properties.
- Isolate the properties.
- Define an abstract group.
- Get lots more examples, and a whole area of mathematics.
More examples

Groups
- Addition in \mathbb{Z}, “clock” addition (mod n) and composing symmetries have similar properties.
- Isolate the properties.
- Define an abstract group.
- Get lots more examples, and a whole area of mathematics.

Equivalence relations
- Study equality, congruence (mod n) and “having same image under a function”.
- Isolate: reflexivity, symmetry, transitivity.
- Define equivalence relation.
- Work with the abstract idea rather than one example
We notice throughout our studies that certain objects come with special maps:

<table>
<thead>
<tr>
<th>objects</th>
<th>“structure preserving” maps</th>
</tr>
</thead>
<tbody>
<tr>
<td>sets</td>
<td>functions</td>
</tr>
<tr>
<td>groups</td>
<td>group homomorphisms</td>
</tr>
<tr>
<td>rings</td>
<td>ring homomorphisms</td>
</tr>
<tr>
<td>modules/vector spaces</td>
<td>linear maps</td>
</tr>
<tr>
<td>topological spaces</td>
<td>continuous maps</td>
</tr>
</tbody>
</table>
One more level of abstraction

What do they have in common?
One more level of abstraction

What do they have in common?

- We can compose them:

\[
A \rightarrow B \rightarrow C
\]
One more level of abstraction

What do they have in common?

- We can compose them:

\[A \rightarrow B \rightarrow C \]

- There is an identity:

\[A \xrightarrow{1_A} A \xrightarrow{f} B = A \xrightarrow{f} B = A \xrightarrow{f} B \xrightarrow{1_B} B \]
One more level of abstraction

What do they have in common?

- We can compose them:

\[
A \xrightarrow{1_A} A \xrightarrow{f} B = A \xrightarrow{f} B = A \xrightarrow{f} B \xrightarrow{1_B} B
\]

- There is an identity:

- Composition is associative: \((h \circ g) \circ f = h \circ (g \circ f)\)

\[
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D
\]
Definition of a category

A category C consists of

- a collection $\text{ob}C$ of objects A, B, C, \ldots and
- for each pair of objects $A, B \in \text{ob}C$, a collection $C(A, B) = \text{Hom}_C(A, B)$ of morphisms $f : A \rightarrow B$, equipped with
Definition of a category

A category C consists of

- a collection $\text{ob}C$ of objects A, B, C, \ldots and
- for each pair of objects $A, B \in \text{ob}C$, a collection $C(A, B) = \text{Hom}_C(A, B)$ of morphisms $f : A \rightarrow B$,

equipped with

- for each $A \in \text{ob}C$, a morphism $1_A : A \rightarrow A$, the identity,
- for each triple $A, B, C \in \text{ob}C$, a composition

\[\circ : \text{Hom}(A, B) \times \text{Hom}(B, C) \rightarrow \text{Hom}(A, C) \]

\[(f, g) \mapsto g \circ f \]

such that the following axioms hold:
A category C consists of

- a collection $\text{ob}C$ of objects A, B, C, \ldots and
- for each pair of objects $A, B \in \text{ob}C$, a collection $C(A, B) = \text{Hom}_C(A, B)$ of morphisms $f: A \rightarrow B$,

equipped with

- for each $A \in \text{ob}C$, a morphism $1_A: A \rightarrow A$, the identity,
- for each triple $A, B, C \in \text{ob}C$, a composition

$$\circ: \text{Hom}(A, B) \times \text{Hom}(B, C) \rightarrow \text{Hom}(A, C)$$

$$(f, g) \mapsto g \circ f$$

such that the following axioms hold:

1. **Identity:** For $f: A \rightarrow B$ we have $f \circ 1_A = f = 1_B \circ f$.

2. **Associativity:** For $f: A \rightarrow B$, $g: B \rightarrow C$ and $h: C \rightarrow D$ we have $h \circ (g \circ f) = (h \circ g) \circ f$.
What is Category Theory?

- One more level of abstraction.
 - addition and symmetries of polyhedra \rightarrow groups
 - equality and congruence \rightarrow equivalence relations
 - integers \rightarrow ring theory

Category Theory is “mathematics about mathematics”.
- sets, groups, vectorspaces etc. \rightarrow categories

- A language for mathematicians.
- A way of thinking.
In category theory:

We are not only interested in objects (such as sets, groups, ...), but how different objects of the same kind *relate* to each other. We are interested in global structures and connections.
In category theory:

We are not only interested in objects (such as sets, groups, ...), but how different objects of the same kind *relate* to each other. We are interested in global structures and connections.

Motto of category theory

We want to really understand how and why things work, so that we can present them in a way which makes everything “look obvious”.

Examples of categories

- Any collection of sets with a certain structure and structure-preserving maps will form a category.

But also:

A group G is a one-object category with the group elements as morphisms:
- $e \in G$ is identity morphism.
- Group multiplication is composition.

A poset P is a category:
- The elements of P are the objects.
- $\text{Hom}(x, y)$ has one element if $x \leq y$, empty otherwise.
- Reflexivity gives identities.
- Transitivity gives composition.
Examples of categories

- Any collection of sets with a certain structure and structure-preserving maps will form a category.

But also:

- A group G is a one-object category with the group elements as morphisms:
 - $e \in G$ is identity morphism.
 - group multiplication is composition.
Examples of categories

- Any collection of sets with a certain structure and structure-preserving maps will form a category.

But also:

- A group G is a one-object category with the group elements as morphisms:
 - $e \in G$ is identity morphism.
 - group multiplication is composition.

- A poset P is a category:
 - The elements of P are the objects.
 - $\text{Hom}(x, y)$ has one element if $x \leq y$, empty otherwise.
 - Reflexivity gives identities.
 - Transitivity gives composition.
1 Category Theory
- Maths is Abstraction
- Category Theory: more abstraction

2 Universal Properties
- Within one category
- Mixing categories
Universal Property Template

Template

X has property \mathcal{P}, and if Y also has property \mathcal{P}, then there is a unique map between X and Y which “fits with the property \mathcal{P}”.
Universal Property Template

Template

\[X \text{ has property } P, \text{ and if } Y \text{ also has property } P, \text{ then there is a unique map between } X \text{ and } Y \text{ which “fits with the property } P”. \]

Note: could be unique map \(X \rightarrow Y \) or \(Y \rightarrow X \).
Terminal objects

First example: property $\mathcal{P} = \text{"is an object" ("empty property")}.}$
Terminal objects

First example: property $\mathcal{P} = \text{"is an object" ("empty property")}$.

Definition

An object $T \in \text{ob} \mathcal{C}$ is called **terminal object** when there is, for every $A \in \text{ob} \mathcal{C}$, a unique morphism $A \longrightarrow T$ in \mathcal{C}.

Examples

- **Sets** X: exactly one function $X \longrightarrow \{\ast\}$.
- **Groups** G: exactly one group hom $G \longrightarrow 0 = \{e\}$.
- **Vector spaces** V: exactly one linear map $V \longrightarrow 0$.
- **Top. spaces** X: exactly one continuous map $X \longrightarrow \{\ast\}$.

Julia Goedecke (Newnham)
Terminal objects

First example: property \(\mathcal{P} = \text{“is an object”} \) (\text{“empty property”}).

Definition

An object \(T \in \text{ob}C \) is called terminal object when there is, for every \(A \in \text{ob}C \), a unique morphism \(A \rightarrow T \) in \(C \).

Examples

- Sets \(X \): exactly one function \(X \rightarrow \{\ast\} \).
- Groups \(G \): exactly one group hom \(G \rightarrow 0 = \{e\} \).
- Vector spaces \(V \): exactly one linear map \(V \rightarrow 0 \).
- Top. spaces \(X \): exactly one continuous map \(X \rightarrow \{\ast\} \).
Initial objects

\(\mathcal{P} = \text{"is an object"}, \) but \textit{unique arrow from} rather than \textit{unique arrow to}.

Definition

An object \(I \in \text{ob}\mathcal{C} \) is called \textbf{initial object} when there is, for every \(A \in \text{ob}\mathcal{C} \), a unique morphism \(I \rightarrow A \) in the category \(\mathcal{C} \).
Initial objects

\[\mathcal{P} = \text{“is an object”}, \text{ but “unique arrow from” rather than “unique arrow to”}. \]

Definition

An object \(I \in \text{ob} C \) is called initial object when there is, for every \(A \in \text{ob} C \), a unique morphism \(I \rightarrow A \) in the category \(C \).

Examples

- Groups \(G \): exactly one group homomorphism \(0 \rightarrow G \).
- Vector spaces \(V \): exactly one linear map \(0 \rightarrow V \).
- Rings \(R \): exactly one ring homomorphism \(\mathbb{Z} \rightarrow R \).
Initial objects

\(P = \text{“is an object”, but “unique arrow from” rather than “unique arrow to”}. \)

Definition

An object \(I \in \text{ob} \mathcal{C} \) is called initial object when there is, for every \(A \in \text{ob} \mathcal{C} \), a unique morphism \(I \to A \) in the category \(\mathcal{C} \).

Examples

- Groups \(G \): exactly one group homomorphism \(0 \to G \).
- Vector spaces \(V \): exactly one linear map \(0 \to V \).
- Rings \(R \): exactly one ring homomorphism \(\mathbb{Z} \to R \).
- Sets \(X \): exactly one function \(\emptyset \to X \).
Initial objects

\[\mathcal{P} = "is \ an \ object", \ but \ "unique \ arrow \ from" \ rather \ than \ "unique \ arrow \ to". \]

Definition

An object \(I \in \text{ob}C \) is called **initial object** when there is, for every \(A \in \text{ob}C \), a unique morphism \(I \rightarrow A \) in the category \(C \).

Examples

- Groups \(G \): exactly one group hom \(0 \rightarrow G \).
- Vector spaces \(V \): exactly one linear map \(0 \rightarrow V \).
- Rings \(R \): exactly one ring homomorphism \(\mathbb{Z} \rightarrow R \).
- Sets \(X \): exactly one function \(\emptyset \rightarrow X \).
- Topological spaces: also \(\emptyset \).
Universal property of a product

\[A \times B \]

\[\pi_1 \quad \pi_2 \]

\[A \\ \rightarrow \quad B \]

\[\exists ! h \text{ which satisfies } \pi_1 \circ h = f \text{ and } \pi_2 \circ h = g. \]

Examples
- Sets: cartesian product \(A \times B = \{(a, b) | a \in A, b \in B\} \).
- Groups: cartesian product with pointwise group structure.
- Topological spaces: cartesian product with the product topology.
Universal property of a product

\[C \xrightarrow{\exists! h} A \times B \]

\[A \xleftarrow{\pi_1} \] \[f \rightarrow \] \[\pi_2 \rightarrow B \]

\[g \rightarrow \] \[\rightarrow C \]

\[\exists! h \text{ which satisfies } \pi_1 \circ h = f \text{ and } \pi_2 \circ h = g. \]
Universal property of a product

\[C \xrightarrow{\exists! h} A \times B \]

\[f \quad \pi_1 \quad \pi_2 \]

\[\exists! h \text{ which satisfies } \pi_1 \circ h = f \text{ and } \pi_2 \circ h = g. \]

Examples

- Sets: cartesian product \(A \times B = \{(a, b) \mid a \in A, b \in B\} \).
- Groups: cartesian product with pointwise group structure.
Universal property of a product

\[\exists ! h \text{ which satisfies } \pi_1 \circ h = f \text{ and } \pi_2 \circ h = g. \]

Examples

- Sets: cartesian product \(A \times B = \{(a, b) \mid a \in A, b \in B\} \).
- Groups: cartesian product with pointwise group structure.
Universal property of a product

$\exists! h$ which satisfies $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$.

Examples

- Sets: cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$.
- Groups: cartesian product with pointwise group structure.
- Topological spaces:
Universal property of a product

There exists a unique morphism $h : C \to A \times B$ such that $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$.

Examples

- Sets: cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$.
- Groups: cartesian product with pointwise group structure.
- Topological spaces: cartesian product with the product topology.
Universal property of a coproduct

\[A \xleftarrow{\iota_1} A + B \xrightarrow{\iota_2} B \]

Examples:
- Disjoint union of sets
- Disjoint union of topological spaces
- Free product of groups
- (External) direct sum of modules
 \[M \oplus N = M \times N \]
Coproducts

Universal property of a coproduct

∃! h s.t. \(h \circ \iota_1 = f \), \(h \circ \iota_2 = g \)
Coproducts

Universal property of a coproduct

\[A \overset{\iota_1}{\longrightarrow} A + B \overset{!}{\longrightarrow} C \overset{\iota_2}{\longleftarrow} B \]

\[\exists ! h \text{ s.t. } h \circ \iota_1 = f, \ h \circ \iota_2 = g \]

Examples

- disjoint union of sets \(A \coprod B \).
- disjoint union of topological spaces.
- free product of groups \(G \ast H \).
- (external) direct sum of modules \(M \oplus N = M \times N \).
A stranger example

Poset as category: \(\text{Hom}(x, y) \) has one element if \(x \leq y \), empty otherwise.

Universal properties in a poset

- Terminal object is “top element” (if it exists).
- Initial object is “bottom element” (if it exists).
- Products are meets (e.g. in a powerset: intersection).
- Coproducts are joins (e.g. in a powerset: union).
Any universal object is unique (up to iso)

- Suppose X, Y both universal for P.

Then $g \circ f : X \to X$ also "commutes with $P".

Identity 1 $X : X \to X$ always "commutes with $P".

But have unique such: so $1_X = g \circ f$.

Similarly $1_Y = f \circ g$.

So $X \cong Y$.

Any universal object is unique (up to iso)

- Suppose X, Y both universal for \mathcal{P}.
- \exists unique $f : X \rightarrow Y$ and $g : Y \rightarrow X$ “commuting with \mathcal{P}”.

So $X \sim Y$.

Julia Goedecke (Newnham)
Uniqueness

Any universal object is unique (up to iso)

- Suppose X, Y both universal for \mathcal{P}.
- \exists unique $f: X \rightarrow Y$ and $g: Y \rightarrow X$ “commuting with \mathcal{P}”.
- Then $g \circ f: X \rightarrow X$ also “commutes with \mathcal{P}”.

Identity 1: $X \rightarrow X$ always “commutes with \mathcal{P}”. But have unique such: so $1_X = g \circ f$.

Identity 2: $1_Y = f \circ g$. So $X \cong = Y$.

Julia Goedecke (Newnham)
Any universal object is unique (up to iso)

- Suppose X, Y both universal for \mathcal{P}.
- \exists unique $f: X \to Y$ and $g: Y \to X$ “commuting with \mathcal{P}”.
- Then $g \circ f: X \to X$ also “commutes with \mathcal{P}”.
- Identity $1_X: X \to X$ always “commutes with \mathcal{P}”.
Any universal object is unique (up to iso)

- Suppose X, Y both universal for \mathcal{P}.
- \exists unique $f: X \to Y$ and $g: Y \to X$ “commuting with \mathcal{P}”.
- Then $g \circ f: X \to X$ also “commutes with \mathcal{P}”.
- Identity $1_X: X \to X$ always “commutes with \mathcal{P}”.
- But have unique such: so $1_X = g \circ f$.
Any universal object is unique (up to iso)

- Suppose X, Y both universal for \mathcal{P}.
- \exists unique $f : X \to Y$ and $g : Y \to X$ “commuting with \mathcal{P}”.
- Then $g \circ f : X \to X$ also “commutes with \mathcal{P}”.
- Identity $1_X : X \to X$ always “commutes with \mathcal{P}”.
- But have unique such: so $1_X = g \circ f$.
- Similarly $1_Y = f \circ g$.
Any universal object is unique (up to iso)

- Suppose X, Y both universal for P.
- \exists unique $f : X \rightarrow Y$ and $g : Y \rightarrow X$ “commuting with P”.
- Then $g \circ f : X \rightarrow X$ also “commutes with P”.
- Identity $1_X : X \rightarrow X$ always “commutes with P”.
- But have unique such: so $1_X = g \circ f$.
- Similarly $1_Y = f \circ g$.
- So $X \cong Y$.
Turning around arrows

Initial is “opposite” of terminal

- Terminal T: for all A, $\exists!$ map $A \rightarrow T$.
- Initial I: for all A, $\exists!$ map $A \leftarrow I$.
Turning around arrows

Initial is “opposite” of terminal
- Terminal T: for all A, $\exists!$ map $A \rightarrow T$.
- Initial I: for all A, $\exists!$ map $A \leftarrow I$.

Coproduct is “opposite” of product
Zero objects

- For groups and modules, initial = terminal.
- Define zero-object 0 to be both initial and terminal.
- Gives at least one map between any two objects:

\[A \rightarrow 0 \rightarrow B \]
Coinciding properties

Zero objects
- For groups and modules, initial = terminal.
- Define zero-object 0 to be both initial and terminal.
- Gives at least one map between any two objects:

\[A \rightarrow 0 \rightarrow B \]

Direct products
- **Direct product** is both product and coproduct.
- E.g. direct sum of modules (vector spaces, abelian groups...
Kernels

Universal property of a kernel

\[
\begin{align*}
K & \xrightarrow{k} A \xrightarrow{f} B \\
C & \xrightarrow{\exists! l} A
\end{align*}
\]

Kernel of \(f \) is universal map whose post-composition with \(f \) is zero.
Kernel of f is universal map whose post-composition with f is zero.

In terms of elements

$$K = \{ k \in A \mid f(k) = 0 \}$$

k the inclusion into A.

Universal property of a kernel
Cokernels: “turn around the arrows”

Universal property of a cokernel

Cokernel of f is universal map whose pre-composition with f is zero.
Cokernels: “turn around the arrows”

Universal property of a cokernel

\[A \xrightarrow{f} B \xrightarrow{q} Q \]

\[0 \xrightarrow{g} \exists! p \]

Cokernel of \(f \) is universal map whose pre-composition with \(f \) is zero.

In modules/vector spaces/abelian groups

\[Q = B / \text{Im}(f) = \{ b + \text{Im}(f) \} , \quad q \text{ the quotient map.} \]

\[A \xrightarrow{} \text{Im}(f) \xrightarrow{} B \xrightarrow{} B / \text{Im}(f) \]
Tensor Product of Vector Spaces/Modules

\[V \times W \xrightarrow{\varphi} V \otimes W \]

\[h \downarrow \exists! \overline{h} \]

\(\varphi \) is universal bilinear map out of \(V \times W \), tensor product \(U \otimes V \) “makes bilinear \(h \) into linear \(\overline{h} \)”.
Tensor Product of Vector Spaces/Modules

\[V \times W \xrightarrow{\varphi} V \otimes W \]

\[\exists ! \overline{h} \]

\(\varphi \) is universal bilinear map out of \(V \times W \), tensor product \(U \otimes V \) “makes bilinear \(h \) into linear \(\overline{h} \).

Construction

- Actual construction is complicated and slightly tedious.
- Working with universal property is often easier than with the elements.
Abelianisation of a group

\[G \rightarrow \text{ab} \ G \rightarrow A \]

Every group hom to an abelian group \(A \) factors uniquely through the abelianisation.
Abelianisation

Abelianisation of a group

\[G \xrightarrow{} ab\ G \]

\[\exists! \quad \downarrow \]

\[A \]

Every group hom to an abelian group \(A \) factors uniquely through the abelianisation.

Construction

- \(ab\ G = G/[G, G] \)
- \([G, G]\) is {\textbf{commutator}}: normal subgroup generated by all \(aba^{-1}b^{-1} \).
Every injective ring hom to a field K factors uniquely through the field of fractions.

“Smallest field into which R can be embedded.”
Field of fractions

Field of fractions of an integral domain

Every injective ring hom to a field K factors uniquely through the field of fractions.
“Smallest field into which R can be embedded.”

Construction

- $F = \{(a, b) \in R \times R \mid b \neq 0\}/\sim$
- equivalence relation \sim is $(a, b) \sim (c, d)$ iff $ad = bc$.
Compactification of a topological space

Every continuous map to a compact Hausdorff space K factors uniquely through the Stone-Čech compactification.
Stone-Čech Compactification

Compactification of a topological space

\[X \rightarrow \beta X \rightarrow K \]

Every continuous map to a compact Hausdorff space \(K \) factors uniquely through the Stone-Čech compactification.

Generalisation

Abelianisation and Stone-Čech compactification are examples of adjunctions: very important concept in Category Theory.
Advantages of Universal Properties

- **Tidyier**: details may be messy, working with universal property can give clear and elegant proofs.
Advantages of Universal Properties

- **Tidyier**: details may be messy, working with universal property can give clear and elegant proofs.
- **Transferable**: situations with different details may have same universal property: transfer ideas/proofs/...
Advantages of Universal Properties

- **Tidyier**: details may be messy, working with universal property can give clear and elegant proofs.

- **Transferable**: situations with different details may have same universal property: transfer ideas/proofs/…

- **Functorial**: defining things via universal properties gives them good categorical properties (used all over maths).
Why bother?

Advantages of Universal Properties

- **Tidyier**: details may be messy, working with universal property can give clear and elegant proofs.
- **Transferable**: situations with different details may have same universal property: transfer ideas/proofs/...
- **Functorial**: defining things via universal properties gives them good categorical properties (used all over maths).
- **Useful**: e.g. to show two objects are isomorphic, show they satisfy same universal property.
Thanks for listening!